Summation 4

22 January 2024 17:31

Wilson's Theorem :-
For any prime P,
$$(P-1)! \equiv -1 \pmod{p}$$

Proof - for $p=2$, it is true
for $p\geq 3$ (edd primes) crusted the polynomial
 $g(n) = (n-1)(n-2) - (n-(p-1))$
So $g(n)$ is of degree P^{-1} .
 $g(n) = nP^{-1} - (1+2+\cdots+p-1)nP^{-2} + \cdots + (p-1)!$
SIT's reals are $1, 2, \dots, P^{-1}$.
Now let us crusted, $h(n) = nP^{-1} - 1$
Seque is $p-1$

Let
$$f(n) = g(n) - h(n)$$

Subgree of most $p-2$ as n^{p-1} is in both $g(n)$ and $h(n)$.
But $f(n)$ also has $p-1$ roots modulo p , but it
connet have more than $p-2$ rots unless its a
zero function
 $\Rightarrow f(n) = 0 \Rightarrow coefficient are all $0 \pmod{p}$
 $\Rightarrow (p-1)! + 1 \equiv 0 \pmod{p}$
 $\Rightarrow (p-1)! + 1 \equiv 0 \pmod{p}$$

Q> Let p>3 be a prime. Then show that,
(p-1)!
$$\left(\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{p-1}\right) \equiv O(\mod p^2)$$

Ans' -
$$|+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1} = \frac{1}{2} \sum_{k=1}^{p-1} \left(\frac{1}{k}+\frac{1}{p-k}\right)$$

 $2\left(1+\frac{1}{2}+\cdots+\frac{1}{p-1}\right) = \sum_{k=1}^{p-1} \left(\frac{p-k+k}{k(p-k)}\right) = \sum_{k=1}^{p-1} \frac{p}{k(p-k)}$

We just need to show
$$|\pm \frac{1}{2} \pm \cdots \pm \frac{1}{p-1} \equiv O(\mod p^2)$$

i.e., $p^2/2(|\pm \frac{1}{2} \pm \cdots \pm \frac{1}{p-1})$

$$\Rightarrow P \left| \frac{2}{P} \left(\left| + \frac{1}{2} + \cdots + \frac{1}{P^{-1}} \right) \right.$$

So
$$\frac{2}{p}(|+\frac{1}{2}+\cdots+\frac{1}{p_{T}}) = \sum_{k=1}^{p+1} \frac{1}{k(p-k)}$$

We just need to Show $\sum_{k=1}^{p-1} \frac{1}{k(p-k)} \equiv O \pmod{p}$

$$P-k \equiv -k \pmod{p}$$

$$P-k \equiv -k \pmod{p}$$

$$F+ \frac{1}{k(-k)}$$

$$P-k \equiv -k(-k)$$

$$P-k \equiv -k(-k)$$

$$P-k = -k(-k)$$

Summation Page 2

Harmonic Modulo P :-

For any integer
$$k = 1, 2, \dots, p-1$$
 we have

$$\frac{1}{k} \equiv (-1)^{k-1} \frac{1}{p} \binom{p}{k} \pmod{p}$$

Proof: - Check this.